

"VXTM Cycle"

Patented
Lower-Cost, Higher-Efficiency
LNG Production Technology

www.expansion-energy.com

"VXTM Cycle" LNG Production Technology – Background

- Patented technology for producing LNG (liquefied natural gas) and CCNG[™] (cold compressed natural gas)
 - Developed and owned by Expansion Energy LLC
- Scalable: Production scales from ~ 2,000 gallons/day (GPD) to > 1,000,000 GPD
- VX Cycle technology is available for license
- VX is a methane expansion cycle that achieves:
 - Lower capital costs—as much as 35% lower CAPEX vs. other LNG cycles
 - Lower operating costs—typically 20-30% lower OPEX vs. other LNG cycles
 - Higher production efficiencies (higher NG-to-LNG conversion efficiency)
 - Simpler logistics & operations / fewer process inputs
 - Improved safety & environmental benefits
 - Less sensitive to hot ambient temperatures
 - Ability to shop-fabricate entire plant Faster time-to-completion vs. field-constructed plants

"VXTM Cycle" Block Diagram

"VXTM Cycle" Technology Overview

- A methane expansion cycle Methane (NG) is both the product & the refrigerant
 - First commercially viable methane expansion cycle that does not require a low-pressure gas "sink"
- VX plants can be factory-built and shipped to the deployment site in modules
 - Pre-engineered, containerized modules are connected at the deployment site
 - A "turnkey" approach that lowers cost and minimizes risks
 - Shorter time-to-completion vs. custom-designed, field-erected LNG plants
 - Easier to finance
- Each VX plant uses a single compressor for the feed gas + refrigerant stream
 - Lowers capital costs & operating costs
 - Competing LNG cycles need multiple compressors
- Can utilize **low-pressure** (e.g., 50 psia) or high-pressure feed gas
- For VX plants > 100,000 GPD, gas-to-LNG conversion efficiency can exceed 85%
 - Efficiency is even higher with higher-pressure feed gas
- Produces its own power

 No connection to the electrical grid is required
- Can be fully automated No continuous labor required
- Uses "off-the-shelf" equipment + does not require a "cold box" (a long lead-time item)

VXTM Cycle Technology Advantages

- High efficiency (NG-to-LNG conversion efficiency)
 - Uses an optimal balance of refrigeration & compression
 - Utilizes waste heat & waste cold (through multiple thermal recovery steps)
- Low capital cost—as much as 35% lower CAPEX vs. other LNG cycles
 - Requires only 1 compressor (vs. 2 compressors for other LNG cycles: 1 for NG + 1 for refrigerant(s))
- Low operating costs—typically 20-30% lower OPEX vs. other LNG cycles
- Simplifies LNG production vs. other LNG technologies such as:
 Nitrogen Cycles / Mixed Refrigerant Cycles / Cascade Cycles
 - Less complex equipment
 - Fewer process inputs (e.g., no separate refrigerants to ship in; no "make-up" refrigerants)
 - Less sensitive to ambient temperatures
- Can utilize low-pressure or high-pressure feed gas (or any pressure in between)
 - Pipeline gas from local gas distribution systems or interstate pipelines
 - Well gas / stranded gas
 - Allows VX plants to be deployed at virtually any feed gas source
- Shop-built, modular VX plants allow for incremental plant expansion with lower capital risk
- Use of multiple modules ensures higher % uptime + more efficient "turn-down"
- Modular VX plants can be moved & re-deployed (if necessary)

VXTM Cycle LNG Product Advantages

- VX Cycle plants produce a differentiated LNG product: "sub-cooled LNG"
- Sub-cooled LNG is several degrees colder than "standard" LNG at the same pressure
- Sub-cooled LNG is not "on the bubble" between NG's liquid and vapor state
 - Allows for less "flashing" of LNG when transferred from stationary tanks to on-vehicle fuel tanks
 - Sub-cooled LNG has a longer "shelf life" in stationary storage tanks and on-vehicle fuel tanks
- VX Cycle plants achieve sub-cooled LNG without sacrificing production efficiency
- VX Cycle plants also produce CCNG[™] (cold compressed natural gas)
 - CCNG is a dense, near-liquid state of NG—above its "critical pressure" and colder than its "critical temperature"
 - Requires substantially less energy to produce than LNG, but is nearly as dense
 - Pumpable (like a liquid) by standard cryogenic liquid pumps
 - See the following slides

CNG/CCNG/LNG Continuum

A *range* of combinations of Temperatures & Pressures

	1	2	3	4	5	6	7	8	9	10		
USE	CNG		STORABLE & PUMPABLE DENSE PHASE NATURAL GAS									
CONDITION	H-Press.	H-Press.		"Warm"	"Warm"	"Warm"	"Warm"	"Warm"	"Cold"	"Cold"		
"NAME"	CNG	L/CNG	CCNG	LNG								
Pressure (psia)	3,600	3,600	700	600	500	400	300	200	60	45		
Temp (Deg. F)	+95	+30	-150	-160	-170	-180	-190	-200	-230	-250		
Pounds/Cubic Ft.)	12.13	15.28	21.44	22.08	22.70	23.30	23.89	24.45	26.15	27.22		
% Density of LNG	44.6%	56.1%	78.8%	81.1%	83.4%	85.6%	87.8%	89.8%	96.1%	100.0%		
Sub-cooled (Deg. F)			37.5	25.7	23.0	25.9	28.0	35.5	6.0	14.4		

Energy per Density Achieved: CNG vs CCNG vs LNG

Energy per Density for 1MM DTH of NG				STORABLE & PUMPABLE DENSE PHASE NATURAL GAS							
Conditions 1-12 1		2	3	4	5	6	7	8	9	10	
Energy Input Reqd. (kWH) 33		775	500	516.7	534.5	553.6	574.1	589.4	673.9	738.1	
kWH to Density Ratio 2	7.45	50.72	23.32	23.40	23.55	23.76	24.03	24.11	25.77	27.12	
	V	WORST	LOW POINTS =						_		
		CASE	Least kWH per Density Achieved								

VXTM Cycle Safety Advantages

- Fewer pieces of equipment percentage fewer moving parts
- Optional: Electric motor can be used as the prime mover instead of a gas engine
 - Eliminates on-site combustion
 - Requires a robust gas clean-up system that produces no sweep gas—e.g., "VCCS™" (see next slide)
- VX requires virtually no refrigerants other than methane
 - Refrigerants used by Mixed Refrigerant LNG cycles are typically flammable hydrocarbons
 - Only VX's auxiliary chilling systems require (a small amount of) refrigerants
- Simpler logistics & operations reduces probability of accidents
- VX operates at lower pressures less prone to valve & seal leaks or stress fractures
- VX plants can be designed to automatically shut down during certain incidents
- Meets NFPA standards and compliant with typical state & local codes

VXTM Cycle Environmental Advantages

- High efficiency (high NG-to-LNG conversion ratio)
- Electric motor-driven VX plants have zero emissions
- Gas engine-driven VX plants can use low-emissions prime movers (low NOx, etc.)

Complementary Gas Clean-Up Technology: "VCCSTM Cycle"

- All LNG cycles need clean feed gas to function properly
 - Even pipeline-quality feed gas needs to have CO₂ and H₂0 removed
- Front-end gas clean-up systems are especially important for:
 - Unprocessed natural gas, landfill gas (LFG) and anaerobic digester gas (ADG)
 - Electric motor-driven LNG plants (which do not have gas-fired prime movers to burn the sweep gas)
- Other gas clean-up systems (such as mole sieves & membranes) have significant drawbacks:
 - Expensive
 - Need to be frequently regenerated by significant volumes of sweep gas
 - Not cost-effective or robust enough for gas with a high % of impurities—CO₂, H₂S, H₂O
- Expansion Energy offers a patented, robust gas clean-up technology: "VCCSTM"
 - VCCS can be used on the front-end of a VX Cycle LNG plant (or other LNG or gas processing plant)
 - "Captures" CO₂, H₂S and H₂O by subjecting feed gas to alkaline materials, forcing a chemical reaction that "neutralizes" these impurities and "pulls" them from the feed gas
- Unlike other clean-up systems, **VCCS does not require regeneration or produce sweep gas**
- VCCS can be easily scaled for the volume of feed gas and/or level of impurities
- The VCCS Cycle is available for license from Expansion Energy

Contact Information

Expansion Energy LLC

David Vandor

Co-Founder & Chief Technology Officer

Email: dvandor@expansion-energy.com

Phone: 914-631-3197

Jeremy Dockter

Co-Founder & Managing Director

Email: jdockter@expansion-energy.com

Phone: 917-653-5418

www.expansion-energy.com